Neutral buoyancy is optimal to minimize the cost of transport in horizontally swimming seals
نویسندگان
چکیده
Flying and terrestrial animals should spend energy to move while supporting their weight against gravity. On the other hand, supported by buoyancy, aquatic animals can minimize the energy cost for supporting their body weight and neutral buoyancy has been considered advantageous for aquatic animals. However, some studies suggested that aquatic animals might use non-neutral buoyancy for gliding and thereby save energy cost for locomotion. We manipulated the body density of seals using detachable weights and floats, and compared stroke efforts of horizontally swimming seals under natural conditions using animal-borne recorders. The results indicated that seals had smaller stroke efforts to swim a given speed when they were closer to neutral buoyancy. We conclude that neutral buoyancy is likely the best body density to minimize the cost of transport in horizontal swimming by seals.
منابع مشابه
The foraging benefits of being fat in a highly migratory marine mammal.
Foraging theory predicts that breath-hold divers adjust the time spent foraging at depth relative to the energetic cost of swimming, which varies with buoyancy (body density). However, the buoyancy of diving animals varies as a function of their body condition, and the effects of these changes on swimming costs and foraging behaviour have been poorly examined. A novel animal-borne accelerometer...
متن کاملEnergy cost and optimisation in breath-hold diving.
We present a new model for calculating locomotion costs in breath-hold divers. Starting from basic mechanics principles, we calculate the work that the diver must provide through propulsion to counterbalance the action of drag, the buoyant force and weight during immersion. Compared to those in previous studies, the model presented here accurately analyses breath-hold divers which alternate act...
متن کاملSink fast and swim harder! Round-trip cost-of-transport for buoyant divers.
Efficient locomotion between prey resources at depth and oxygen at the surface is crucial for breath-hold divers to maximize time spent in the foraging layer, and thereby net energy intake rates. The body density of divers, which changes with body condition, determines the apparent weight (buoyancy) of divers, which may affect round-trip cost-of-transport (COT) between the surface and depth. We...
متن کاملHow do cormorants counter buoyancy during submerged swimming?
Buoyancy is a de-stabilizing force for diving cormorants that forage at shallow depths. Having to counter this force increases the cost of transport underwater. Cormorants are known to be less buoyant than most water birds but are still highly buoyant (rho= approximately 0.8 kg m(-3)) due to their adaptations for aerial flight. Nevertheless, cormorants are known to dive at a wide range of depth...
متن کاملFree-swimming northern elephant seals have low field metabolic rates that are sensitive to an increased cost of transport.
Widely ranging marine predators often adopt stereotyped, energy-saving behaviours to minimize the energetic cost of transport while maximizing energy gain. Environmental and anthropogenic disturbances can disrupt energy balance by prompting avoidance behaviours that increase transport costs, thereby decreasing foraging efficiency. We examined the ability of 12 free-ranging, juvenile northern el...
متن کامل